

Available online at www.sciencedirect.com

Journal of Combinatorial Theory

Journal of Combinatorial Theory, Series B 87 (2003) 2-16

Series B

http://www.elsevier.com/locate/jctb

Blocking nonorientability of a surface

Bojan Mohar^{a,1} and Alexander Schrijver^b

^a Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia ^b CWI, Kruislaan 413, Amsterdam, The Netherlands

Received 6 December 2001

Abstract

Let S be a nonorientable surface. A collection of pairwise noncrossing simple closed curves in S is a *blockage* if every one-sided simple closed curve in S crosses at least one of them. Robertson and Thomas [9] conjectured that the orientable genus of any graph G embedded in S with sufficiently large face-width is "roughly" equal to one-half of the minimum number of intersections of a blockage with the graph. The conjecture was disproved by Mohar (Discrete Math. 182 (1998) 245) and replaced by a similar one. In this paper, it is proved that the conjectures in Mohar (1998) and Robertson and Thomas (J. Graph Theory 15 (1991) 407) hold up to a constant error term: For any graph G embedded in S, the orientable genus of G differs from the conjectured value at most by $O(g^2)$, where g is the genus of S

© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

We follow standard graph theory terminology [2]. By a *surface* we mean a compact connected PL 2-manifold without boundary. The *genus* g(G) of a graph G is the smallest integer g such that G has an embedding in the orientable surface \mathbb{S}_g of genus g. The nonorientable surface of genus g will be denoted by \mathbb{N}_g . So, \mathbb{N}_1 is the projective plane and \mathbb{N}_2 is the Klein bottle. The *nonorientable genus* of G is the smallest g such that G admits an embedding in \mathbb{N}_g .

All embeddings of graphs in surfaces considered in this paper are 2-cell embeddings in which every face is homeomorphic to an open disk in the plane. If Π is an

E-mail addresses: bojan.mohara uni-lj.si (B. Mohar), lexa cwi.nl (A. Schriiver).

¹Supported in part by the Ministry of Science and Technology of Slovenia, Research Project J1-0502-0101.

embedding of a connected graph G in some surface, the *Euler genus* of Π is defined as the number $\mathbf{eg}(G,\Pi) = 2 - |V(G)| + |E(G)| - f$, where f is the number of Π -facial walks. We refer to [8] for additional information on embeddings of graphs in surfaces.

A closed curve on a surface $\mathbb S$ is a continuous PL mapping $\gamma: S^1 \to \mathbb S$, and we sometimes identify γ with its image $\gamma(S^1)$ in $\mathbb S$. If a graph G is embedded in $\mathbb S$, then $\operatorname{cr}(\gamma,G)$ denotes the number of points $z \in S^1$ such that $\gamma(z)$ is a point of G in $\mathbb S$. The curve γ is one-sided if every neighborhood of γ on $\mathbb S$ contains a Möbius strip, and two-sided otherwise.

2. The orientable genus of graphs with a given nonorientable embedding

Let Π be a (2-cell) embedding of a graph G into a *nonplanar* surface S, i.e. a surface distinct from the 2-sphere. Then we define the *face-width* $\mathbf{fw}(G,\Pi)$ (also called the *representativity*) of the embedding Π as the minimum number of facial walks of G whose union contains a noncontractible curve. Alternatively, $\mathbf{fw}(G,\Pi)$ is the minimum $\mathrm{cr}(\gamma,G)$ taken over all noncontractible closed curves γ on S.

It is easy to see that the nonorientable genus of every graph G is bounded by a linear function of the genus $\mathbf{g}(G)$. On the other hand, Auslander, Brown, and Youngs [1] proved that there are graphs embeddable in the projective plane whose orientable genus is arbitrarily large. This phenomenon is now appropriately understood after Fiedler et al. [3] proved that the genus $\mathbf{g}(G)$ of a graph G that is Π -embedded in the projective plane equals

$$\mathbf{g}(G) = \left| \frac{1}{2} \mathbf{f} \mathbf{w}(\Pi) \right| \tag{1}$$

if $\mathbf{fw}(\Pi) \neq 2$. If $\mathbf{fw}(\Pi) = 2$, then $\mathbf{g}(G)$ is either 0 or 1.

This result has been generalized to the Klein bottle by Robertson and Thomas [9] as follows. Let Π be an embedding of G in \mathbb{N}_2 . Denote by $\operatorname{ord}_2(G,\Pi)$ the minimum of $\lceil \operatorname{cr}(\gamma,G)/2 \rceil$ taken over all noncontractible and nonseparating twosided simple closed curves γ . Similarly, let $\operatorname{ord}_1(G,\Pi)$ denote the minimum of $\lceil \operatorname{cr}(\gamma_1,G)/2 \rceil + \lceil \operatorname{cr}(\gamma_2,G)/2 \rceil$ taken over all pairs γ_1,γ_2 of nonhomotopic onesided simple closed curves. The latter minimum restricted to all noncrossing pairs γ_1,γ_2 of onesided simple closed curves is denoted by $\operatorname{ord}'_1(G,\Pi)$. Let

$$g = \min\{\operatorname{ord}_1(G, \Pi), \operatorname{ord}_2(G, \Pi)\}$$
(2)

and

$$g' = \min\{\operatorname{ord}_1'(G, \Pi), \operatorname{ord}_2(G, \Pi)\}. \tag{3}$$

Robertson and Thomas [9] proved that if $g \ge 4$, then g(G) = g = g'. Eqs. (1) and (2) imply that the genus of graphs that can be embedded in the projective plane or the Klein bottle can be computed in polynomial time.

By Thomassen [10], genus testing is **NP**-complete for general graphs. Therefore, it is interesting that the classes of projective planar graphs and graphs embeddable in

the Klein bottle admit a polynomial time genus testing algorithm. Very likely the genus problem for graphs with bounded nonorientable genus is solvable in polynomial time as suggested in [9].

Robertson and Thomas [9] conjectured that (1) and (2) can be generalized as follows. Suppose that $\Gamma = \{\gamma_1, \dots, \gamma_p\}$ is a set of closed curves in the surface \mathbb{N}_k . Then Γ is *crossing-free* if the following holds:

- (a) No γ_i crosses itself.
- (b) For $1 \le i < j \le p$, the curves γ_i and γ_j do not cross each other.

If there exist simple closed curves $\gamma'_1, \ldots, \gamma'_p$ with pairwise disjoint images in \mathbb{N}_k such that γ'_i is homotopic to γ_i $(i = 1, \ldots, p)$ and such that every onesided closed curve in \mathbb{N}_k crosses at least one of the curves $\gamma'_1, \ldots, \gamma'_p$, then we say that the family Γ is a *blockage* and that Γ *blocks onesided curves* in the surface.

Suppose that a graph G is embedded in \mathbb{N}_k . Robertson and Thomas [9] define the *order* of a blockage $\Gamma = \{\gamma_1, ..., \gamma_p\}$ as

$$\operatorname{ord}(\Gamma, G) = \frac{1}{2}(k - 2p + s) + \sum_{i=1}^{p} \operatorname{ord}(\gamma_{i}, G), \tag{4}$$

where s is the number of onesided closed curves in Γ and

$$\operatorname{ord}(\gamma_i, G) = \begin{cases} \lfloor \operatorname{cr}(\gamma_i, G)/2 \rfloor & \text{if } \gamma_i \text{ is onesided,} \\ \lceil \operatorname{cr}(\gamma_i, G)/2 \rceil & \text{if } \gamma_i \text{ is twosided.} \end{cases}$$

Let us observe that the term $\frac{1}{2}(k-2p+s)$ in (4) is an integer and that it is equal to the genus of the (bordered) orientable surface obtained by cutting \mathbb{N}_k along the curves in Γ . It is easy to prove [9]:

Lemma 2.1. Let G be a graph embedded in \mathbb{N}_k , and let Γ be a blockage in \mathbb{N}_k . Then $g(G) \leq \operatorname{ord}(\Gamma, G)$.

Based on (1)-(3) and Lemma 2.1, Robertson and Thomas proposed the following.

Conjecture 2.2 (Robertson and Thomas [9]). Suppose that G is embedded in \mathbb{N}_k with sufficiently large face-width. Let g (respectively g') be the minimum order of a blockage (crossing-free blockage) in \mathbb{N}_k Then $\mathbf{g}(G) = g = g'$.

Mohar [7] disproved this conjecture and posed a related conjecture what the correct expression for g(G) might be (Conjecture 2.3). The value for the orientable genus of G conjectured in [7] can differ only by a constant (depending on k) from the conjectured value of Robertson and Thomas.

Suppose that G is embedded in \mathbb{N}_k . Consider a crossing-free blockage $\Gamma = \{\gamma_1, \dots, \gamma_p\}$ and cut the surface \mathbb{N}_k along $\gamma_1, \dots, \gamma_p$. This results in a graph \bar{G}

embedded in an orientable surface. If a vertex $a \in V(G)$ lies on at least one of the curves γ_i $(1 \le i \le p)$, then a gives rise to two or more vertices in \bar{G} (called *copies* of a). Add a new vertex v_a and join it to all copies of a in \bar{G} . Call the resulting graph G' and note that contraction of the new edges results in the original graph G. Now, the orientable embedding of \bar{G} defines local rotations of all vertices of G' except for the new vertices v_a . The minimum genus of an orientable embedding of G' extending this partial embedding is called the *genus order* of the blockage Γ . It is easy to see that in the case when no vertex of G is split into more than two vertices of \bar{G} , the genus order coincides with (4), and that in general it is majorized by (4).

Conjecture 2.3 (Mohar [7]). If G is embedded in a nonorientable surface with sufficiently large face-width, then the orientable genus of G is equal to the minimum genus order of a crossing-free blockage.

In this paper it is proved that Conjectures 2.2 and 2.3 hold up to a constant error term, even without the assumption on large face-width. It is shown that for any graph G embedded in \mathbb{N}_g , the orientable genus of G differs from the minimum (genus) order of a crossing-free blockage by less than $(64g)^2$. See Corollary 4.8.

3. Blocking one-sided curves

Suppose that G is a graph that is Π -embedded in some surface S. We denote by $\Gamma = \Gamma(G,\Pi)$ the corresponding *vertex-face graph*. Its vertices are the union of vertices of G and the vertices of the geometric dual G^* of G, i.e., the Π -facial walks. The edges of Γ correspond to the incidence of vertices and faces, with multiple edges if a vertex appears more than once on a Π -facial walk. The graph Γ has a natural quadrilateral embedding in S. The geometric dual of Γ , the graph which we shall denote by $M = M(G,\Pi)$, is known as the *medial graph* of G.

A set $B \subseteq E(M)$ is an *edge-blockage* in M if every one-sided cycle of M contains an edge of B. If $B \subseteq E(M)$, let $B^* \subseteq E(\Gamma)$ be the set of dual edges, and let $\Gamma(B^*)$ be the subgraph of Γ generated by B^* .

Lemma 3.1. Suppose that G is Π -embedded in \mathbb{N}_g and that $B \subseteq E(M)$ is an edge-blockage in M that is minimal (with respect to inclusion). Then

- (a) $\Gamma(B^*)$ is a bipartite Eulerian graph (possibly disconnected).
- (b) The edge set B^* of $\Gamma(B^*)$ can be partitioned into a set of edge-disjoint crossing-free closed walks. Any such partition into crossing-free closed walks is a crossing-free blockage in the surface.
- (c) $\mathbb{N}_a \backslash \Gamma(B^*)$ is connected.

(d) Let n_i be the number of vertices of degree 2i + 2 in $\Gamma(B^*)$. Then

$$\sum_{i=0}^{\infty} i n_i \leqslant g - 1. \tag{5}$$

Proof. To prove claim (a), suppose that $\Gamma(B^*)$ contains a vertex x of odd degree d. Let e_1, \ldots, e_d be the edges in B dual to the edges of $\Gamma(B^*)$ that are incident with x. By the minimality of B, there exist Π -one-sided cycles $C_i \subseteq E(M) \setminus (B \setminus e_i)$, $i = 1, \ldots, d$. Let C_0 be the facial walk in M that corresponds to the vertex x of Γ . It is easy to see that the symmetric difference of the edges of these cycles, $C = C_0 + C_1 + \cdots + C_d$, contains a one-sided cycle in M. This yields a contradiction since C is disjoint from B.

(b) Any partition of B^* into closed walks is obtained as follows. For each vertex $x \in V(\Gamma(B^*))$, partition the edges incident with x into pairs and then join the paired edges to form a collection $\mathscr C$ of closed walks in Γ (which may be viewed as closed curves in $\mathbb N_g$). By choosing the pairs so that they are not crossing with any other chosen pair of edges incident with the same vertex, none of the curves in $\mathscr C$ crosses itself and no two of them cross each other.

Suppose that there is a onesided simple closed curve γ in \mathbb{N}_g that crosses no member of \mathscr{C} . By elementary topology, it may be assumed that γ does not intersect any edge of Γ in its internal point, i.e., γ passes through faces and vertices of Γ . Then γ is determined (up to homotopy) by a cyclic sequence $v_1f_1v_2f_2...v_kf_kv_1$ of vertices $v_i \in V(\Gamma)$ and faces f_i of Γ that are traversed by γ . Note that $f_1, ..., f_k \in V(M)$. For i = 1, ..., k, let S_i be a walk in M that starts with the vertex f_{i-1} of M, traverses a segment of the facial walk in M which corresponds to v_i , and ends at f_i . Clearly, the closed walk W in M which is composed of $S_1, ..., S_k$ is homotopic to γ (in \mathbb{N}_g), so it is one sided. Since γ crosses no curve from \mathscr{C} , each S_i contains an even number of edges of B. Let $e_1, ..., e_{2d}$ be the edges of B that are traversed by W an odd number of times and let $C_1, ..., C_{2d}$ be as in the proof of part (a). Then $W + C_1 + \cdots + C_{2d}$ contains a one-sided cycle that is disjoint from B, a contradiction.

- (c) Suppose that $\mathbb{N}_g \backslash B^*$ is disconnected. Then there is an edge $e^* \in B^*$ such that on each side of e^* there is a different component of $\mathbb{N}_g \backslash B^*$. Let $e \in B$ be the edge which is dual to e. Let C be a Π -onesided cycle in $M \backslash (B \backslash e)$. Since C contains e, it intersects two components of $\mathbb{N}_g \backslash B^*$. Therefore, C crosses B^* at least twice, a contradiction.
- (d) $\Gamma(B^*)$ is a graph in \mathbb{N}_g having $n = \sum_i n_i$ vertices and $m = \sum_i (i+1)n_i$ edges. It may be disconnected, and its embedding in \mathbb{N}_g may not be 2-cell. But Euler's inequality still holds: $n m + f \geqslant \chi(\mathbb{N}_g) = 2 g$. By (c), the number f of connected components of $\mathbb{N}_g \backslash B^*$ is 1, hence $\sum_i i n_i = m n \leqslant g 2 + f = g 1$. \square

A vertex set $U \subseteq V(G)$ of a Π -embedded graph G is a *vertex-blockage* if every Π -one-sided cycle of G contains a vertex in U. Similarly, a set $U^* \subseteq V(G^*)$ of Π -faces is a *face-blockage* if every one-sided cycle in the dual graph G^* contains a vertex in U^* .

It is easy to see that U^* is a face-blockage if and only if every one-sided closed curve which does not contain vertices of G intersects a face in U^* .

Lemma 3.2. Suppose that G is Π -embedded in \mathbb{N}_g and that $B \subseteq E(M)$ is an edge-blockage in M that is minimal (with respect to inclusion). Let

$$U = V(\Gamma(B^*)) \cap V(G) \quad and \quad U^* = V(\Gamma(B^*)) \cap V(G^*). \tag{6}$$

Then U is a vertex-blockage, U^* is a face-blockage in G, and the following inequalities hold:

$$2|U| \le |B| \le 2|U| + 2g - 2,\tag{7}$$

$$2|U^*| \le |B| \le 2|U^*| + 2g - 2,\tag{8}$$

$$|U| + |U^*| \le |B| \le |U| + |U^*| + g - 1. \tag{9}$$

Proof. Let C be a Π -one-sided cycle of G. By Lemma 3.1(b), C intersects $\Gamma(B^*)$. Hence it intersects U. This proves that U is a vertex-blockage. By duality, U^* is a face-blockage.

To prove the first inequality of (7), observe that the minimum degree in $\Gamma(B^*)$ is ≥ 2 (by Lemma 3.1(a)) and that |B| equals the sum of degrees of vertices in U. To verify the second inequality, we shall apply Lemma 3.1(d) and denote by n'_i the number of vertices in U whose degree in $\Gamma(B^*)$ is 2i + 2. Then

$$|B| = \sum_{u \in U} \deg(u) = 2|U| + 2\sum_{i} in'_{i}$$

$$\leq 2|U| + 2\sum_{i} in_{i} \leq 2|U| + 2(y - 1).$$

Similar proofs yield (8) and (9). \square

Let $\beta = \beta(G, \Pi)$ denote the *vertex-blockage number*, i.e. the minimum number of vertices in a vertex-blockage. Similarly, let $\beta^* = \beta^*(G, \Pi)$ be the *face-blockage number* (the minimum number of faces in a face-blockage), and $\beta' = \beta'(G, \Pi)$ the *edge-blockage number* (the minimum number of edges in an edge-blockage in M).

Corollary 3.3. Suppose that G is Π -embedded in the nonorientable surface \mathbb{N}_g . Then the following inequalities hold:

$$2\beta \leqslant \beta' \leqslant 2\beta + 2g - 2,\tag{10}$$

$$2\beta^* \leqslant \beta' \leqslant 2\beta^* + 2g - 2,\tag{11}$$

$$\beta + \beta^* \leqslant \beta' \leqslant \beta + \beta^* + y - 1. \tag{12}$$

Proof. Let B be a minimum edge-blockage, i.e. $|B| = \beta'$. Then $U = \Gamma(B^*) \cap V(G)$ is a vertex-blockage by Lemma 3.2. This easily implies that $2\beta \leq \beta'$.

Suppose now that U is a minimum vertex-blockage in G. If $u \in U$ is a vertex of degree d, split u into d new vertices u_1, \ldots, u_d , with u_i joined only to the ith neighbor of u ($i = 1, \ldots, d$). This operation can be performed on the surface for all vertices in U simultaneously. Since U is a blockage, the resulting graph contains no one-sided cycles. We now start identifying some of the new vertices corresponding to Π -consecutive neighbors of u, say u_i and u_{i+1} . We perform such identifications on the surface as long as possible so that the resulting graph G' contains no one-sided cycles.

Let $B \subseteq E(M)$ be the set of those edges of M that correspond to those Π -consecutive pairs u_i, u_{i+1} that have not been identified. Since G' contains no one-sided cycles, B is an edge-blockage. Moreover, since every further identification gives rise to a one-sided cycle, B is a minimal edge-blockage (with respect to inclusion). It is also obvious that $V(\Gamma(B^*)) \cap V(G) \subseteq U$. By Lemma 3.2 we thus have

$$|B| \le 2|V(\Gamma(B^*)) \cap V(G)| + 2g - 2$$

 $\le 2|U| + 2g - 2 = 2\beta + 2g - 2.$

This implies the second inequality in (10).

Relation (11) follows by duality, while (12) is proved analogously.

Corollary 3.4. Let G be a graph that is Π -embedded in \mathbb{N}_a . Then

$$\mathbf{g}(G) \leqslant \frac{1}{4}\beta'(G,\Pi) + \frac{g-1}{2},$$

$$\mathbf{g}(G)\!\leqslant\!\!\frac{1}{2}\beta(G,\Pi)+g-1$$

and

$$g(G) \leq \frac{1}{2} \beta^*(G, \Pi) + g - 1.$$

Proof. Let B be a minimum edge-blockage. By Lemma 3.1(b), $\Gamma(B^*)$ defines a crossing-free blockage $\Gamma = \{\gamma_1, \ldots, \gamma_p\}$. Let s be the number of one-sided curves in Γ . Clearly, $\sum_i \operatorname{cr}(\gamma_i, G) = \frac{1}{2} |B^*| = \frac{1}{2} |B| = \frac{1}{2} \beta'(G, \Pi)$. By Lemma 3.1(c), it follows that Γ contains at most $\frac{g}{2}$ twosided curves. Consequently, $\operatorname{ord}(\Gamma, G) \leqslant \frac{1}{2} (g - 2p + s) + \frac{1}{2} \sum_i \operatorname{cr}(\gamma_i, G) + \frac{1}{2} |\{i \mid \gamma_i \text{ is two sided}\}| \leqslant \frac{1}{2} (g - 2p + s) + \frac{1}{4} \beta'(G, \Pi) + \frac{1}{2} (p - s) \leqslant \frac{1}{4} \beta'(G, \Pi) + \frac{1}{2} (p - s) \leqslant \frac{1}{4} \beta'(G, \Pi) + \frac{1}{2} (p - s) \leqslant \frac{1}{4} \beta'(G, \Pi)$. This proves the first inequality. The second and the third inequality follow from the first one by (10) and (11), respectively. \square

4. Unstable faces and blockages

Let Π_0 be an embedding of a graph G. Suppose that there is a facial walk F in which some vertex v appears twice. Then there is a simple closed curve γ in the surface which is contained in the face bounded by F such that $\gamma \cap G = \{v\}$ and γ intersects F in two distinct appearances of v in F. If γ is contractible and its interior contains a vertex or an edge of G, then we delete the vertices and edges of G in the interior of γ . This operation is called an *elementary reduction* of type I.

Suppose now that there are facial walks F and F' such that there exist distinct vertices $v, v' \in V(F) \cap V(F')$. Then there is a simple closed curve γ in the surface which is composed of two segments α, β joining v and v' in the faces bounded by F and F', respectively. If γ is contractible and its interior contains at least two edges of G, then we replace all edges and vertices in its interior by a single edge joining v and v'. Such an operation is called an *elementary reduction of type II*.

The embedded graph G is essentially 3-connected if no elementary reductions of type I or II are possible. See also [5]. An obvious property of elementary reductions is the following:

Lemma 4.1. Let Π be an embedding of a graph G. If the Π' -embedded graph G' is obtained from G by a sequence of elementary reductions, then $\mathbf{g}(G') = \mathbf{g}(G)$ and $\beta(G,\Pi) = \beta(G',\Pi'), \beta'(G,\Pi) = \beta'(G',\Pi'),$ and $\beta^*(G,\Pi) = \beta^*(G',\Pi')$.

By Lemma 4.1, we shall be able to restrict ourselves to essentially 3-connected embeddings.

Suppose now that we have two embeddings, Π and Π' , of a graph G. Let $F = v_0e_1v_1...v_{k-1}e_kv_0$ be a Π -facial walk. A subsequence $e_iv_ie_{i+1}$ (indices modulo k), $i \in \{1, ..., k\}$, is called an *angle* of F. The angle $e_iv_ie_{i+1}$ is identified with the angle $e_{i+1}v_ie_i$ obtained by traversing the facial walk F in the reverse direction. The angle $e_iv_ie_{i+1}$ is (Π, Π') -unstable if it is not an angle of the embedding Π' . If two consecutive angles $e_iv_ie_{i+1}$ and $e_{i+1}v_{i+1}e_{i+2}$ of the facial walk F are (Π, Π') -stable but $e_iv_ie_{i+1}v_{i+1}e_{i+2}$ is not a subwalk of a Π' -facial walk, then the angles $e_iv_ie_{i+1}$ and $e_{i+1}v_{i+1}e_{i+2}$ are said to be weakly (Π, Π') -unstable.

Suppose that $W = \dots e_1 v e_2 \dots$ and $W' = \dots e_3 v e_4 \dots$ are walks in a Π' -embedded graph G. If the edges e_1, \dots, e_4 are distinct and their Π' -clockwise order around v is $e_1 e_3 e_2 e_4$ or $e_1 e_4 e_2 e_3$, then we say that W and W' Π' -cross at v. Similarly we define Π' -crossing of two walks at a common edge e. Two walks are Π' -crossing if they Π' -cross at some vertex or at some edge.

Lemma 4.2. Let Π and Π' be embeddings of a graph G.

- (a) If evf is a (Π, Π') -unstable angle of a Π -facial walk F, then there is a Π -facial walk F' with an angle e'vf' such that F and F' Π' -cross each other at v.
- (b) Suppose that dve and euf are weakly (Π, Π') -unstable angles of a Π -facial walk F. Let F' = ...d' veuf' ... be the second Π -facial walk containing the edge e. Then F

and F' Π' -cross each other at e. Moreover, either one of the angles d've or euf' is (Π, Π') -unstable, or these two angles of F' are weakly (Π, Π') -unstable.

Proof. To prove (a), consider the local Π' -clockwise ordering $e, e_1, \ldots, e_s, f, f_1, \ldots, f_t$ of edges around v. Since e and f are not Π' -consecutive, we have $s \ge 1$ and $t \ge 1$. It is easy to see that there are Π -consecutive edges e', f' such that $e' = e_i$ for some i $(1 \le i \le s)$, and $f' = f_j$ for some j $(1 \le j \le t)$, or vice versa. This implies (a).

Claim (b) is obvious and we leave the details for the reader. \Box

A collection of cycles $C_1, ..., C_k$ is called a *collection of bouquets* if there exist vertices $x_1, ..., x_p$ such that every cycle C_i $(1 \le i \le k)$ contains precisely one of these vertices and such that for any two distinct cycles C_i, C_j $(1 \le i < j \le k)$, the intersection $C_i \cap C_j$ is either empty, one of the vertices $x_1, ..., x_p$, or an edge incident to one of these vertices.

Part (a) of the following lemma is proved in [4], while part (b) is easy to see (cf., e.g., [6]).

Lemma 4.3. Let G be a graph embedded in a surface of Euler genus g, and let C_1, \ldots, C_k be a collection of bouquets of cycles of G.

- (a) If $C_1, ..., C_k$ are noncontractible and pairwise nonhomotopic then $k \leq 3g$.
- (b) If no subset of $C_1, ..., C_k$ separates the surface then $k \leq g$.

The proof of the next lemma is essentially contained in [6].

Lemma 4.4. Let G be a Π' -embedded graph and let $\{(C_i, C_i') | i = 1, ..., k\}$ be a collection of pairs of closed walks of G with the following properties:

- (a) $C_1, ..., C_k$ are distinct cycles of G and no two of them are Π' -crossing.
- (b) If $1 \le i < j \le k$ then C_i does not Π' -cross with C'_i .
- (c) For i = 1, ..., k, $C_i \cap C'_i$ is either a vertex or an edge.
- (d) For i = 1, ..., k, C_i and C'_i are Π' -crossing at their intersection.

Then the genus $\mathbf{g}(G, \Pi')$ of Π' is at least k.

Lemma 4.5. Let $B_U \subseteq E(M)$ be the set of the edges of the medial graph $M(G, \Pi)$ which correspond to the (Π, Π') -unstable and to the weakly (Π, Π') -unstable angles. If Π' is an orientable embedding, then B_U is an edge-blockage for Π .

Proof. Let C be a one-sided cycle in M. An open (normal) neighborhood of C is homeomorphic to the Möbius band. If $E(C) \cap B_U = \emptyset$, then it is easy to see that the same neighborhood would be a neighborhood of C in the embedding Π' . Since Π' is orientable, we conclude that $E(C) \cap B_U \neq \emptyset$. \square

Suppose that the set $\{1, 2, ..., 2p\}$ is partitioned into pairs $A_i = \{a_i, b_i\}$, where $a_i < b_i$, i = 1, ..., p. Suppose that $1 \le i \le p$ and $1 \le j \le p$ and that $b_i \ge a_j$ and $b_j \ge a_i$. Then the pair A_i, A_j is called a *canonical pair*. An integer $l \in \{1, 2, ..., 2p\}$ is *covered* by this canonical pair if either

- (a) i = j and $a_i \leq l \leq b_i$, or
- (b) $i \neq j$ and l is either between a_i and a_i or between b_i and b_i (or both).

Lemma 4.6. Under the assumptions given above, there is a set of at least $\lceil \sqrt{p/20} \rceil$ canonical pairs such that every $l \in \{1, 2, ..., 2p\}$ is covered by at most one of these pairs.

Proof. The proof is by induction on p. The proof is obvious for $p \le 20$ and easy for $21 \le p \le 80$ (where we need only two canonical pairs).

Suppose now that $p \ge 81$. Let $q = \lfloor p/2 \rfloor$. Let us first consider the case when at least $\lceil p/3 \rceil$ pairs A_i satisfy $a_i \le 2q$ and $b_i > 2q$. Let Z be the set of all such pairs. Define a partial order \le on Z by $A_i \le A_j$ if $a_i \le a_j$ and $b_i \le b_j$. By the Dilworth Theorem, this partial order either contains a chain or an antichain of cardinality $z = \lceil \sqrt{|Z|} \rceil \ge \lceil \sqrt{p/3} \rceil$. If A_{i_1}, \ldots, A_{i_2} is a chain or an antichain, where $a_{i_1} < a_{i_2} < \cdots < a_{i_2}$, then consecutive pairs in this order are canonical pairs that cover pairwise disjoint subsets of $\{1, \ldots, 2p\}$. This gives rise to at least $\lfloor z/2 \rfloor$ canonical pairs. Since $p \ge 81$, $\lfloor z/2 \rfloor \ge \frac{1}{2} \sqrt{p/3} - \frac{1}{2} \ge \sqrt{p/20}$. This completes the proof in this case.

Suppose now that there are less than $\lceil p/3 \rceil$ such pairs. The remaining subset of at least $\lceil 2p/3 \rceil$ pairs A_i gives rise to two subsets containing p_1 and p_2 pairs, respectively, such that the pairs in the first set are contained in $\{1, ..., 2q\}$, and the pairs from the second set are contained in $\{2q+1, ..., 2p\}$. Note that $p_1 + p_2 \ge \lceil 2p/3 \rceil$ and that $p_1 \le \lfloor p/2 \rfloor$ and $p_2 \le \lceil p/2 \rceil$. In fact, we may assume that $p_1, p_2 \le p/2$. (If $p_2 > p/2$, then we take $q = \lceil p/2 \rceil$ and repeat the above proof.)

By the induction hypothesis, these sets of pairs contain at least $\rho = \lceil \sqrt{p_1/20} \rceil + \lceil \sqrt{p_2/20} \rceil$ canonical pairs that cover disjoint sets. The above conditions on p_1, p_2 imply that $\rho \geqslant \sqrt{(p/2)/20} + \sqrt{(p/6)/20} > \sqrt{p/20}$. This completes the proof. \square

Theorem 4.7. Let G be a graph that is Π -embedded in the nonorientable surface \mathbb{N}_g . Then

$$\frac{1}{2}\beta^*(G,\Pi) - (64g)^2 \leq \mathbf{g}(G) \leq \frac{1}{2}\beta^*(G,\Pi) + g - 1.$$
(13)

Proof. The second inequality in (13) holds by Corollary 3.4. To prove the first one, it suffices to verify that the bound $\mathbf{g}(G) \geqslant \frac{1}{2} |\mathcal{F}| - (64g)^2$ holds for some face-blockage \mathcal{F} (not necessarily a minimum one). By Lemma 4.1, we may assume that the Π -embedded graph G is essentially 3-connected.

Let Π' be an orientable embedding of G with genus g(G). Let $B_U \subseteq E(M)$ be the set of those edges of the medial graph $M(G,\Pi)$ which correspond to the (Π,Π') -unstable and to the weakly (Π,Π') -unstable angles. By Lemma 4.5, the set B_U is an edge-blockage.

If a vertex v appears more than once on a facial walk F, then we say that the angles of F at the appearances of v are 1-singular. If there are distinct facial walks F, F' such that there exist distinct vertices $v, v' \in V(F) \cap V(F')$ which are not consecutive on (at least) one of these facial walks, then we say that the angles of F and of F' at v and v' are 2-singular. For i = 1, 2, let $B_i \subseteq E(M)$ be the set of the edges which correspond to the i-singular angles. Since G is essentially 3-connected, the edges in B_i^* correspond to the edges in noncontractible cycles of length 2i in the vertex-face graph Γ .

Let B be an edge-blockage contained in $B_U \cup B_1 \cup B_2$ of minimum cardinality. Let $A = \Gamma(B^*)$ be the subgraph of Γ generated by the edges dual to B.

Consider the connected components of Λ which are cycles. On each of these cycles, select a vertex, and let A_0 be the set of all selected vertices. By Lemma 3.1(c), no subset of these cycles separates the surface and hence, by Lemma 4.3(b), $|A_0| \leq g$.

Denote by A_3 the set of vertices of Λ containing A_0 and all vertices of degree > 2 in Λ . Let A_4 be the set of all vertices of Λ whose distance in Λ from A_3 is 1 or 2. By (5) we have

$$|A_3 \cup A_4| \le 5|A_0| + \sum_{i \ge 1} (1 + 2 \cdot (2i + 2))n_i \le 5g + 9 \sum_{i \ge 1} in_i \le 14g - 9.$$

Similar arguments as used above imply that the graph $\Lambda - (A_3 \cup A_4)$ is the union of $r \leq 3g - 2$ disjoint paths P_1, \ldots, P_r . Choose arbitrarily an orientation of each of the paths P_1, \ldots, P_r . If C is a Π -facial walk corresponding to a vertex of P_i ($1 \leq i \leq r$), let $v_C \in V(G)$ be the vertex of G that follows C in A in the chosen direction of P_i . If the edge of A joining C and v_C belongs to B_C^* , then Lemma 4.2 implies that there is a Π -facial walk C' such that C and C' Π' -cross at v_C or Π' -cross at a common edge incident with v_C . We say that C' is a *mate* of C. If the edge joining C and v_C is in B_2^* , then we let the *mate* C' of C be a face such that C and C' intersect at v_C and at another vertex that is not adjacent with v_C .

Let A_1 be the set of vertices of A which correspond to Π -facial walks that are not cycles of G. For $x \in A_1$, let F be the corresponding facial walk, and let $v \in V(F)$ be a vertex of G that appears twice in F. Since G is essentially 3-connected, v and F determine a noncontractible cycle of length 2 in Γ . (Possibly, the edges of that cycle are not contained in A.) Choose one such 2-cycle for every $x \in A_1$, and let C_1, \ldots, C_k ($k = |A_1|$) be the resulting collection of cycles of Γ . Clearly, C_1, \ldots, C_k form a bouquet collection in Γ . If k > 9g, then Lemma 4.3(a) implies that four of the cycles are homotopic to each other, say Q_1, Q_2, Q_3, Q_4 . These cycles of length 2 in Γ may intersect but their vertices corresponding to faces of G are distinct. We may assume that C_1 and C_4 bound a cylinder (or a disk) that contains C_2 and C_3 . Now, we add to B^* the edges of Q_1 and Q_4 . This gives rise to a new edge-blockage contained in $B_U \cup B_1 \cup B_2$ whose cardinality is $\leq |B| + 4$. Since Q_2 and Q_3 are contained in the cylinder (disk) bounded by Q_1 and Q_4 , we may remove the edges of B^* incident with the vertices of A_1 that are on Q_2 and Q_3 and also remove the edges

of Q_4 and still have a blockage $B' \subset B^* \cup E(C_1)$. Clearly, $|B'| < |B^*|$, a contradiction. Consequently, $|A_1| \le 9g$.

Let A_2 be the set of vertices of P_1, \ldots, P_r that are not in A_1 and correspond to Π -facial cycles which intersect their mate in more than just a vertex or an edge. Let C be such facial cycle, and let C' be its mate. Since G is essentially 3-connected, there is a noncontractible 4-cycle Q in Γ whose vertices are C, C', v_C and another vertex $y \in V(C \cap C')$. Let Z be the set of all such 4-cycles of Γ . For $Q \in Z$, we denote its vertices by C(Q), C'(Q), $v_C(Q)$, and v(Q).

It is a simple exercise to prove that there is a subset $Z_1 \subseteq Z$ of cardinality $\geq \frac{1}{9}|A_2|$ such that for any $Q_1, Q_2 \in Z_1$, $v_C(Q_1) \neq y(Q_2)$ and $C(Q_1) \neq C'(Q_2)$. (Hint: Consider the directed graph on all v_C and y-vertices, with an edge from $v_C(Q)$ to v(Q) for each $Q \in Z$, and observe that the outdegree of this digraph is at most 1.) Clearly, $V(Q_1) \cap V(Q_2) \subseteq \{C'(Q_1), y(Q_1)\}$. If Q_1 and Q_2 intersect in two vertices, then we may assume that their intersection is the edge $C'(Q_1)v(Q_1) = C'(Q_2)v(Q_2)$.

Let $z = \sqrt{|Z_1|}$. If there is a vertex y such that y = y(Q) for at least z members of Z_1 , then those 4-cycles in Z_1 that contain y form a collection of bouquets of cardinality at least z. Otherwise, there is a subset of Z_1 of cardinality $\geqslant z$ such that no two cycles in this subset have their y-vertex in common. Again, this subset forms a collection of bouquets. If z > 9g, then four of the cycles in that collection of bouquets are homotopic, and a proof similar to the above proof of the fact that $|A_1| \leqslant 9g$ yields a contradiction to the minimality of B. This shows that $z \leqslant 9g$ and, therefore, $|A_2| \leqslant 729g^2$.

Let $F_1, ..., F_N$ be the facial cycles corresponding to the vertices on $P_1, ..., P_r$ which are not in $A_1 \cup A_2$, enumerated in the order of the paths $P_1, ..., P_r$ and with respect to their selected orientation. Let $F'_1, ..., F'_N$ be their mates. Since the facial cycles corresponding to the vertices in Λ form a face-blockage, we have

$$N \geqslant \beta^*(G, \Pi) - |A_1 \cup A_2| - |A_3 \cup A_4|$$

$$\geqslant \beta^*(G, \Pi) - (27q + 1)^2. \tag{14}$$

If $i, j \in \{1, ..., N\}$ and $j - i \ge 2$, then we say that $\{i, j\}$ is a *bad pair* if either F_i and F_j , or F_i and F'_j intersect and Π' -cross each other. Let M be a set of bad pairs of maximum cardinality such that no two members of M have an element in common. Our goal is to prove that $|M| = O(g^2)$.

Each bad pair $\{i,j\}$ determines a path Q_{ij} joining two vertices of Λ : If F_i and F_j Π' -cross at vertex x, then Q_{ij} is the path of length 2 connecting F_i and F_j through x. If F_i and F'_j Π' -cross at vertex x, then Q_{ij} is the path of length 3 connecting F_i and a vertex in $F_j \cap F'_j$ through x. Clearly, $E(Q_{ij}) \subseteq B^*_{U}$.

If $\{i,j\}$ is a bad pair and F_i and F_j are in the same path P_a $(1 \le a \le r)$, then Q_{ij} and the edges of P_a determine a cycle R_{ij} which is called the *canonical cycle* of the bad pair $\{i,j\}$. Observe that

$$|E(Q_{ii})| < \frac{1}{2} |E(R_{ii})|.$$
 (15)

Suppose that $\{i,j\}$ and $\{i',j'\}$ (i < j,i' < j') are disjoint bad pairs such that i' < j and i < j'. If F_j and $F_{j'}$ are in the same path P_a $(1 \le a \le r)$ and F_i and $F_{j'}$ are in the same path P_b $(1 \le b \le a)$, then there is a cycle $R_{ij,i'j'}$ in A that is composed of Q_{ij} , $Q_{i'j'}$ and two paths $P_{jj'} \subseteq P_a$ and $P_{ii'} \subseteq P_b$ joining the "upper" and "lower" ends of Q_{ij} and $Q_{i'j'}$, respectively. The cycle $R_{ij,i'j'}$ is called the *canonical cycle* of bad pairs $\{i,j\}$ and $\{i',j'\}$. We shall need an analogy of (15). That is not automatic, but if $|j-j'| \ge 4$, then the length of the segment $P_{ii'}$ is at least 7. Consequently,

$$|E(Q_{ij})| + |E(Q_{i'j'})| < |E(P_{ij'})|. \tag{16}$$

We can view $P_1 \cup \cdots \cup P_r$ as being a single path by adding auxiliary edges joining the end of P_l with the beginning of P_{l+1} , $l=1,\ldots,r-1$. Then we can define canonical cycles for bad pairs (or pairs of bad pairs) also when the ends of Q_{ij} (and $Q_{l'j'}$) are not in the same path(s) P_a (and P_b). The canonical cycles that use the auxiliary edges are called *fake canonical cycles*; the others are said to be *genuine*.

In order to meet the condition $|j - j'| \ge 4$ needed for (16), we order the bad pairs in M according to their larger members j, and let M_1 be the subset consisting of every fourth bad pair in this order.

Lemma 4.6 shows that there is a set of at least $\lceil \sqrt{|M_1|/20} \rceil$ canonical cycles (using only bad pairs in M_1) whose intersections with $P_1 \cup \cdots \cup P_r$ are pairwise disjoint. Since $r \leq 3g-2$, at most 3g-3 of these canonical cycles are fake. Let R_1, \ldots, R_s ($s \geq \lceil \sqrt{|M_1|/20} \rceil - 3g + 3$) be the subset of genuine canonical cycles. These canonical cycles are disjoint except that they may have a vertex in common if the mate F_j' of F_j is the same as the mate F_j' of F_j , and F_j , F_l are in distinct canonical cycles. Therefore, R_1, \ldots, R_s form a collection of bouquets.

If one of these cycles, say $R_l = R_{ij}$ (or $R_l = R_{ij,l'j'}$) would be contractible, then the replacement in B^* of $E(R_l) \cap P_a$ (or $E(P_{ij'})$) with Q_{ij} (or $Q_{ij} \cup Q_{i'j'}$) would give rise to another blockage. By (15) (or (16)), this blockage would contradict minimality of B. Therefore, R_l is noncontractible. Similar conclusion holds if two of these genuine canonical cycles are homotopic (in which case we can add to B^* the missing edges of one of them and remove the edges of the second one). Lemma 4.3 implies that $s \leq 3g$. Consequently, $|M| \leq 4|M_1| \leq 3240g^2$.

Let A be the set of facial cycles F_l such that l is contained in some bad pair in M. As proved above, $|A| \le 2 \cdot 3240g^2$. Let $C_1, ..., C_t$ be a maximum subsequence of $F_1, ..., F_N$ such that none of C_i is in A and such that, for i = 1, ..., t - 1, if $C_i = F_j$, then $C_{i+1} \ne F_{j+1}$. Clearly,

$$t \geqslant \frac{1}{2}(N - |A|) \geqslant \frac{1}{2}N - 3240g^2. \tag{17}$$

For j = 1, ..., t, let C'_j be the mate of C_j . Let us consider the collection of pairs $\mathscr{C} = \{(C_j, C'_j) | j = 1, ..., t\}.$

We claim that $\mathscr C$ satisfies conditions (a)–(d) of Lemma 4.4. No facial walk C_i is in $A_1 \cup A_2$. Therefore, every C_i is a cycle and (c) holds. Since the cycles in A do not participate in the sequence C_1, \ldots, C_t , the pairs in $\mathscr C$ satisfy (a) and (b). Clearly, (d) is also satisfied.

By Lemma 4.4 and inequalities (14) and (17),

$$\mathbf{g}(G) = \mathbf{g}(G, \Pi') \geqslant |\mathscr{C}| \geqslant \frac{1}{2}N - 3240g^{2} \geqslant \frac{1}{2}\beta^{*}(G, \Pi) - (64g)^{2}.$$

The proof is complete. \Box

The "error" term $(64g)^2$ in (13) is not best possible. There are examples which show that such term of order $\Omega(g)$ is necessary, and we conjecture that (13) can be improved to

$$\mathbf{g}(G) \geqslant \frac{1}{2} \beta^*(G, \Pi) - O(g).$$

Corollary 4.8. Let G be a graph embedded in \mathbb{N}_g , and let r be the minimum order of a crossing-free blockage. Then

$$r - (64g)^2 - g + 1 \leq \mathbf{g}(G) \leq r$$
.

Proof. The second inequality is obvious by Lemma 2.1. To verify the first one, let B be a minimum edge-blockage, and let Γ be a crossing-free blockage corresponding to $\Gamma(B^*)$ by Lemma 3.1(b). The proof of Corollary 3.4 actually gives the following inequality:

$$r \leqslant \operatorname{ord}(\Gamma, G) \leqslant \frac{1}{2} \beta^*(G, \Pi) + g - 1. \tag{18}$$

By Theorem 4.7, $\mathbf{g}(G) \geqslant \frac{1}{2} \beta^*(G, \Pi) - (64g)^2$. This inequality combined with (18) completes the proof. \square

Finally, let us observe that Corollary 3.3 implies that $\beta(G, \Pi)$ and $\beta^*(G, \Pi)$ cannot differ too much. Therefore, g(G) is also approximately equal to $\beta(G, \Pi)$, up to a term which depends on g only.

It is not clear if there is an efficient algorithm for finding a minimum (crossing-free) blockage or its approximation for a graph embedded in \mathbb{N}_g . For every fixed g, this task is solvable in polynomial time since there is only a bounded number of possibilities for homotopies of curves in an optimum crossing-free blockage. However, this approach seems complicated, and we refrain from describing further details. The case when g = 2 is described in [9].

References

- [1] L. Auslander, I.A. Brown, J.W.T. Youngs, The imbedding of graphs in manifolds, J. Math. Mech. 12 (1963) 629-634.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1981.
- [3] J.R. Fiedler, J.P. Huneke, R.B. Richter, N. Robertson, Computing the orientable genus of projective graphs, J. Graph Theory 20 (1995) 297–308.
- [4] A. Malnič, B. Mohar, Generating locally cyclic triangulations of surfaces, J. Combin. Theory Ser. B 56 (1992) 147–164.

- [5] B. Mohar, Combinatorial local planarity and the width of graph embeddings, Canad. J. Math. 44 (1992) 1272–1288.
- [6] B. Mohar, Uniqueness and minimality of large face-width embeddings of graphs, Combinatorica 15 (1995) 541–556.
- [7] B. Mohar, On the orientable genus of graphs with bounded nonorientable genus, Discrete Math. 182 (1998) 245–253.
- [8] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Baltimore, MD, 2001.
- [9] N. Robertson, R. Thomas, On the orientable genus of graphs embedded in the Klein bottle, J. Graph Theory 15 (1991) 407-419.
- [10] C. Thomassen, The graph genus problem is NP-complete, J. Algorithms 10 (1989) 568-576.